International Consensus and Guidelines on Medical Thermography 2011 (ICGMT 2011)

2nd International Work Group for Medical Thermography Meeting (IWGMT 2011)

The abstracts of the ICGMT 2011 have been published in issue 4 of last years' volume. One abstract was submitted after finalising issue for the print and could therefore not included in the proceedings. In order to achieve a complete documentation of the Meeting, held in Iguassu last November, the lately submitted abstract is shown below

3D THERMOGRAPHY MODEL USING MAGNETIC RESONANCE AND INFRARED IMAGE FUSION

Ionildo José Sanches, Mauren Abreu de Souza, Humberto Remigio Gamba, Marcos Leal Brioschi

UTFPR - Universidade Federal tecnológica do Paraná; InfraRedMed - www.infraredmed.org

OBJECTIVES: Medical Infrared imaging is a noninvasive diagnostic method that allows the examiner to evaluate and quantify changes on skin surface temperature. However, IR is essentially a 2D technique and its image does not provide useful anatomical information associated with it. This paper presents a new registration/fusion method that allows the fusion and 3D visualization of combined multimodal medical images (MRI or CT). The result is a 3D rendered image that can be used as a tool to improve medical diagnosis of certain pathologies [1].

METHOD: Two experiments were performed to acquire IR images of a volunteer and a phantom using a ThermaCAM E320 infrared camera (FLIR Systems). In each experiment four images were acquired: anterior (0°), lateral (90°), posterior (180°) and medial (270°).

Before image sobreposition (fusion) it is necessary to register the IR with the MRI/CT images. In order to do this, for each one of the orthogonal IR view, a correspondent 2D projection of the reconstructed 3D MRI/CT volume was created using a technique similar to Range Image [2]. Then, the registration between the MRI/CT projection with the corresponding thermal images of the volunteer and the phantom are performed. The affine

transformation technique was used to perform such registration. Finally, it is performed the back-projection, in which the registered thermal images are superimposed at the thermal image, onto the contour of the object for each corresponding MRI slice.

RESULTS: This new methodology was validated using sets of MRI/CT and IR medical images [1]. The 3D visualization is done using OpenGL library. The voxels on the outer surface are represented as an outer thermal shell, which are surrounded by the internal MRI/CT images (containing the morphological information).

CONCLUSION: This new image registration tool combines two completely different medical images modalities: 2D surface thermal images and MRI/CT images slices. The result is a 3D thermal visualization image that contains the surface gradient temperature, measured by the IR cameras, and the anatomical internal information of the MRI or CT scanner.

REFERENCES

1. Bichinho G L, Gariba MA, Sanches IJ, Gamba HR, Cruz FPF, Nohama P. A Computer Tool for the Fusion and Visualization of Thermal and Magnetic Resonance Images, Journal of Digital Imaging, 2009, 22(5) 527-534

[2] Jain R, Kasturi R., Schunck BG, Machine Vision, McGraw-Hill, 1995.